【培訓(xùn)收益】
通過此次課程培訓(xùn),可使學(xué)習(xí)者獲得如下收益:
1.深刻理解在“互聯(lián)網(wǎng)+”時代下大數(shù)據(jù)的產(chǎn)生背景、發(fā)展歷程和演化趨勢;
2.了解業(yè)界市場需求和國內(nèi)外最 新的大數(shù)據(jù)技術(shù)潮流,洞察大數(shù)據(jù)的潛在價值;
3.理解大數(shù)據(jù)項目解決方案及業(yè)界大數(shù)據(jù)應(yīng)用案例,從而為企業(yè)在大數(shù)據(jù)項目中的技術(shù)選型及技術(shù)架構(gòu)設(shè)計提供決策參考;
4.掌握業(yè)界最 流行的Hadoop與Spark大數(shù)據(jù)技術(shù)體系;
5.掌握大數(shù)據(jù)采集技術(shù);
6.掌握大數(shù)據(jù)分布式存儲技術(shù);
7.掌握NoSQL與NewSQL分布式數(shù)據(jù)庫技術(shù);
8.掌握大數(shù)據(jù)倉庫與統(tǒng)計機器學(xué)習(xí)技術(shù);
9.掌握大數(shù)據(jù)分析挖掘與商業(yè)智能(BI)技術(shù);
10.掌握大數(shù)據(jù)離線處理技術(shù);
11.掌握Storm流式大數(shù)據(jù)處理技術(shù);
12.掌握基于內(nèi)存計算的大數(shù)據(jù)實時處理技術(shù);
13.掌握大數(shù)據(jù)管理技術(shù)的原理知識和應(yīng)用實戰(zhàn);
14.深入理解大數(shù)據(jù)平臺技術(shù)架構(gòu)和使用場景;
15.嫻熟運用Hadoop與Spark大數(shù)據(jù)技術(shù)體系規(guī)劃解決方案滿足實際項目需求;
16.熟練地掌握基于Hadoop與Spark大數(shù)據(jù)平臺進(jìn)行應(yīng)用程序開發(fā)、集群運維管理和性能調(diào)優(yōu)技巧;
17.掌握基于Flink的大數(shù)據(jù)實時處理技術(shù)與批處理操作。
【培訓(xùn)特色】
1.課程培訓(xùn)業(yè)界最 流行、應(yīng)用最廣泛的Hadoop、Spark和Flink大數(shù)據(jù)技術(shù)體系。強化大數(shù)據(jù)平臺的分布式集群架構(gòu)和核心關(guān)鍵技術(shù)實現(xiàn)、大數(shù)據(jù)應(yīng)用項目開發(fā)和大數(shù)據(jù)集群運維實踐、以及Hadoop、Spark與Flink大數(shù)據(jù)項目應(yīng)用開發(fā)與調(diào)優(yōu)的全過程沙盤模擬實戰(zhàn);
2.通過一個完整的大數(shù)據(jù)開發(fā)項目及一組實際項目訓(xùn)練案例,完全覆蓋Hadoop、Spark與Flink生態(tài)系統(tǒng)平臺的應(yīng)用開發(fā)與運維實踐。課堂實踐項目以項目小組的形式進(jìn)行沙盤實操練習(xí),重點強化理解Hadoop、Spark與Flink大數(shù)據(jù)項目各個階段的工作重點,同時掌握作為大數(shù)據(jù)項目管理者的基本技術(shù)與業(yè)務(wù)素養(yǎng);
3.本課程的授課師資都是有著多年在一線從事Hadoop、Spark與Flink大數(shù)據(jù)項目的資深講師,采用原理技術(shù)剖析和實戰(zhàn)案例相結(jié)合的方式開展互動教學(xué)、強化以建立大數(shù)據(jù)項目解決方案為主體的應(yīng)用開發(fā)、技術(shù)討論與交流咨詢,在學(xué)習(xí)的同時促進(jìn)講師學(xué)員之間的交流,讓每個學(xué)員都能在課程培訓(xùn)過程中學(xué)到實實在在的大數(shù)據(jù)技術(shù)知識體系,以及大數(shù)據(jù)技術(shù)應(yīng)用實戰(zhàn)技能,具備實際大數(shù)據(jù)應(yīng)用項目的動手開發(fā)實踐與運維管理部署能力。授課過程中,根據(jù)學(xué)員需求,增設(shè)交流環(huán)節(jié),可將具體工作中遇到的實際問題展開討論,講師會根據(jù)學(xué)員的實際情況微調(diào)授課內(nèi)容,由講師帶著全部學(xué)員積極討論,并給出一定的時間讓學(xué)員上臺發(fā)言,現(xiàn)場剖析問題的癥結(jié),規(guī)劃出可行的解決方案。
【課程安排】
第 一天
上午大數(shù)據(jù)技術(shù)基礎(chǔ)
1.大數(shù)據(jù)的產(chǎn)生背景與發(fā)展歷程
2.大數(shù)據(jù)的4V特征,以及與云計算的關(guān)系
3.大數(shù)據(jù)應(yīng)用需求以及潛在價值分析
4.業(yè)界最 新的大數(shù)據(jù)技術(shù)發(fā)展態(tài)勢與應(yīng)用趨勢
5.大數(shù)據(jù)思維的轉(zhuǎn)變
6.大數(shù)據(jù)項目的系統(tǒng)與技術(shù)選型,及落地實施的挑戰(zhàn)
7.“互聯(lián)網(wǎng)+”時代下的電子商務(wù)、制造業(yè)、交通行業(yè)、電信運營商、銀行金融業(yè)、電子政務(wù)、移動互聯(lián)網(wǎng)、教育信息化等行業(yè)應(yīng)用實踐與應(yīng)用案例介紹
業(yè)界主流的大數(shù)據(jù)技術(shù)方案
1.大數(shù)據(jù)軟硬件系統(tǒng)全棧與關(guān)鍵技術(shù)介紹
2.大數(shù)據(jù)生態(tài)系統(tǒng)全景圖
3.主流的大數(shù)據(jù)解決方案介紹
4.Apache大數(shù)據(jù)平臺方案剖析
5.CDH大數(shù)據(jù)平臺方案剖析
6.HDP大數(shù)據(jù)平臺方案剖析
7.基于云的大數(shù)據(jù)平臺方案剖析
8.大數(shù)據(jù)解決方案與傳統(tǒng)數(shù)據(jù)庫方案比較
9.國內(nèi)外大數(shù)據(jù)平臺方案與廠商對比
大數(shù)據(jù)計算模型(一)——批處理MapReduce
1.MapReduce產(chǎn)生背景與適用場景
2.MapReduce計算模型的基本原理
3.MapReduce作業(yè)執(zhí)行流程
4.MapReduce編程模型:Map處理和Reduce處理
5.MapReduce處理流程:數(shù)據(jù)讀取collect、中間數(shù)據(jù)sort、中間數(shù)據(jù)spill、中間數(shù)據(jù)shuffle、聚合分析reduce
6.MapReduce開發(fā)高級應(yīng)用:Combiner技術(shù)與應(yīng)用場景、Partitioner技術(shù)與應(yīng)用場景、多Reducers應(yīng)用
7.MapReduce開發(fā)與應(yīng)用實戰(zhàn):Hadoop平臺搭建與運行;MapReduce安裝與部署
8.應(yīng)用案例:基于HDFS+MapReduce集成的服務(wù)器日志分析采集、存儲與分析MapReduce程序?qū)嵗_發(fā)與運行
9.MapReduce參數(shù)調(diào)優(yōu)與性能優(yōu)化技巧
第 一天
下午大數(shù)據(jù)存儲系統(tǒng)與應(yīng)用實踐
1.分布式文件系統(tǒng)HDFS產(chǎn)生背景與適用場景
2.HDFS master-slave系統(tǒng)架構(gòu)與讀寫工作原理
3.HDFS核心組件技術(shù)講解,NameNode與fsimage、editslog,DataNode與數(shù)據(jù)塊
4.HDFS Federation機制,viewfs機制,使用場景講解
5.HDFS高可用**機制,SecondaryNameNode,NFS冷備份,基于zookeeper的HA方案
6.HDFS參數(shù)調(diào)優(yōu)與性能優(yōu)化
大數(shù)據(jù)實戰(zhàn)練習(xí)一1.Hadoop平臺搭建、部署與應(yīng)用實踐,包含HDFS分布式文件系統(tǒng),YARN資源管理軟件,MapReduce計算框架軟件
2.HDFS文件、目錄創(chuàng)建、上傳、下載等命令操作,HDFS合并、歸檔操作,HDFS監(jiān)控平臺使用
3.MapReduce程序在YARN上運行,YARN監(jiān)控平臺使用
第二天
上午Hadoop框架與生態(tài)發(fā)展,以及應(yīng)用實踐操作
1.Hadoop的發(fā)展歷程
2.Hadoop 1.0的核心組件Jobtracker,Tasktracker,以及適用范圍
3.Hadoop 3.0的核心組件YARN工作原理,以及與Hadoop 1.0的聯(lián)系與區(qū)別
4.Hadoop關(guān)鍵機制:任務(wù)推測執(zhí)行,任務(wù)容錯,任務(wù)選擇執(zhí)行,心跳機制
5.HadoopYARN的資源管理與作業(yè)調(diào)度機制:FIFO調(diào)度,Capacity調(diào)度器,F(xiàn)air調(diào)度器
6.Hadoop常用參數(shù)調(diào)優(yōu)與性能優(yōu)化技術(shù)
大數(shù)據(jù)計算模型(二)——實時處理/內(nèi)存計算Spark
1.MapReduce計算模型的瓶頸
2.Spark產(chǎn)生動機、基本概念與適用場景
3.Spark編程模型與RDD彈性分布式數(shù)據(jù)集的工作原理與機制
4.Spark實時處理平臺運行架構(gòu)與核心組件
5.Spark RDD主要transformation:map,flatMap,filter,union,sample,join,reduceByKey,groupByKey
6.Spark RDD主要action:count,collect,reduce,saveAsTextFile
7.Spark寬、窄依賴關(guān)系與DAG圖分析
8.Spark容錯機制
9.Spark作業(yè)調(diào)度機制
10.Spark緩存機制:Cache操作,Persist操作與存儲級別
11.Spark作業(yè)執(zhí)行機制:執(zhí)行DAG圖、任務(wù)集、executor執(zhí)行模型、BlockManager管理
12.Spark standardalone,Spark on YARN運行模式
13.Scala開發(fā)介紹與Spark常用transformation函數(shù)介紹
14.Spark調(diào)優(yōu):序列化機制、RDD復(fù)用、Broadcast機制、高性能算子、資源參數(shù)調(diào)優(yōu)
第二天
下午大數(shù)據(jù)倉庫查詢技術(shù)Hive、SparkSQL、Impala,以及應(yīng)用實踐
1.基于MapReduce的大型分布式數(shù)據(jù)倉庫Hive基礎(chǔ)知識與應(yīng)用場景
2.Hive數(shù)據(jù)倉庫的平臺架構(gòu)與核心技術(shù)剖析
3.Hive metastore的工作機制與應(yīng)用
4.Hive內(nèi)部表和外部表
5.Hive分區(qū)、分桶機制
6.Hive行、列存儲格式
7.基于Spark的大型分布式數(shù)據(jù)倉庫SparkSQL基礎(chǔ)知識與應(yīng)用場景
8.Spark SQL實時數(shù)據(jù)倉庫的實現(xiàn)原理與工作機制
9.SparkSQL數(shù)據(jù)模型DataFrame
10.SparkSQL程序開發(fā)與
11.SparkSQL數(shù)據(jù)讀取與結(jié)果保存:json,Hive table,Parquet file,RDD
12.SparkSQL和Hive的區(qū)別與聯(lián)系
13.SparkSQL操作實戰(zhàn)
14.基于MPP的大型分布式數(shù)據(jù)倉庫Presto基礎(chǔ)知識與應(yīng)用場景
15.Presto實時查詢系統(tǒng)平臺架構(gòu)、關(guān)鍵技術(shù)介紹,以及與Hive,SparkSQL的對比
Hadoop集群運維監(jiān)控工具1.Hadoop運維管理監(jiān)控系統(tǒng)Ambari工具介紹
2.第三方運維系統(tǒng)與工具Ganglia,Nagios
大數(shù)據(jù)實戰(zhàn)練習(xí)二
1.基于Hadoop平臺搭建、部署與配置Spark集群,Sparkshell環(huán)境實踐操作,Spark案例程序分析
2.基于sbt的Spark程序編譯、開發(fā)與提交運行
3.應(yīng)用案例一:基于Spark的服務(wù)器運行日志TopN分析、程序?qū)嵗_發(fā)
4.應(yīng)用案例二:基于Spark的搜索引擎日志熱詞與用戶分析、程序?qū)嵗_發(fā)
5.基于MapReduce的Hive數(shù)據(jù)倉庫實踐,Hive集群安裝部署,基于文件的Hive數(shù)據(jù)倉庫表導(dǎo)入導(dǎo)出與分區(qū)操作,Hive SQL操作,Hive客戶端操作
6.SparkSQL shell實踐操作:數(shù)據(jù)表讀取、查詢與結(jié)果保存
第三天
上午大數(shù)據(jù)計算模型(三)——流處理Storm,SparkStreaming
1.流數(shù)據(jù)處理應(yīng)用場景與流數(shù)據(jù)處理的特點
2.流數(shù)據(jù)處理工具Storm的平臺架構(gòu)與集群工作原理
3.Storm關(guān)鍵技術(shù)與并發(fā)機制
4.Storm編程模型與基本開發(fā)模式
5.Storm數(shù)據(jù)流分組
6.Storm可靠性**與Acker機制
7.Storm應(yīng)用案例分析
8.流數(shù)據(jù)處理工具Spark Streaming基本概念與數(shù)據(jù)模型
9.SparkStreaming工作機制
10.SparkStreaming程序開發(fā)介紹
11.SparkStreaming的全局統(tǒng)計和窗口函數(shù)
12.Storm與SparkStreaming的對比
13.SparkStreaming開發(fā)案例:基于文件流的SparkStreaming程序開發(fā);基于socket消息的SparkStreaming程序開發(fā)
大數(shù)據(jù)與機器學(xué)習(xí)技術(shù)
1.機器學(xué)習(xí)發(fā)展歷程
2.機器學(xué)習(xí)與大數(shù)據(jù)關(guān)聯(lián)與區(qū)別
3.數(shù)據(jù)挖掘經(jīng)典算法
4.預(yù)測算法:線性回歸與應(yīng)用場景,非線性回歸與應(yīng)用場景
5.分類算法:邏輯回歸與應(yīng)用場景,決策樹與應(yīng)用場景,樸素貝葉斯算法與應(yīng)用場景,支持向量機算法與應(yīng)用場景
6.聚類算法;k-means與應(yīng)用場景
7.基于Hadoop的大數(shù)據(jù)機器學(xué)習(xí)技術(shù)
8.基于MapReduce的機器學(xué)習(xí)庫Mahout
9.Mahout支持的數(shù)據(jù)挖掘算法
10.Mahout編程模型與發(fā)
11.基于Spark的機器學(xué)習(xí)庫Spark MLlib
12.Spark MLlib支持的數(shù)據(jù)挖掘算法
13.Spark MLlib編程模型與開發(fā):基于Spark MLlib的文本分類,基于Spark MLlib的聚類
第三天
下午大數(shù)據(jù)ETL操作工具,與大數(shù)據(jù)分布式采集系統(tǒng)
1.Hadoop與DBMS之間數(shù)據(jù)交互工具的應(yīng)用
2.Sqoop導(dǎo)入導(dǎo)出數(shù)據(jù)的工作原理
3.Flume-NG數(shù)據(jù)采集系統(tǒng)的數(shù)據(jù)流模型與系統(tǒng)架構(gòu)
4.Kafka分布式消息訂閱系統(tǒng)的應(yīng)用介紹與平臺架構(gòu),及其使用模式
面向OLTP型應(yīng)用的NoSQL數(shù)據(jù)庫及應(yīng)用實踐
1.關(guān)系型數(shù)據(jù)庫瓶頸,以及NoSQL數(shù)據(jù)庫的發(fā)展,概念,分類,及其在半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)場景下的適用范圍
2.列存儲NoSQL數(shù)據(jù)庫HBase簡介與數(shù)據(jù)模型剖析
3.HBase分布式集群系統(tǒng)架構(gòu)與讀寫機制,ZooKeeper分布式協(xié)調(diào)服務(wù)系統(tǒng)的工作原理與應(yīng)用
4.HBase表設(shè)計模式與primary key設(shè)計規(guī)范
5.文檔NoSQL數(shù)據(jù)庫MongoDB簡介與數(shù)據(jù)模型剖析
6.MongoDB集群模式、讀寫機制與常用API操作
8.鍵值型NoSQL數(shù)據(jù)庫Redis簡介與數(shù)據(jù)模型剖析
9.Redis多實例集群架構(gòu)與關(guān)鍵技術(shù)
10.NewSQL數(shù)據(jù)庫技術(shù)簡介及其適用場景
大數(shù)據(jù)ELT數(shù)據(jù)采集與應(yīng)用實戰(zhàn)
1.Sqoop安裝、部署與配置,基于Sqoop、MySQL與Hive操作MySQL數(shù)據(jù)庫與Hive數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出
2.Kafka安裝、部署與配置,基于Kafka創(chuàng)建和消費topic實踐操作
3.Flume+HDFS+MapReduce/Spark大數(shù)據(jù)采集、存儲與分析實踐操作
新一代大數(shù)據(jù)處理引擎Flink Flink簡介,F(xiàn)link的體系架構(gòu),對比:Flink、Storm和Spark Streaming,Standalone的模式,Yarn模式的兩種模式,Yarn兩種模式的區(qū)分,F(xiàn)link on yarn內(nèi)部實現(xiàn),ZooKeeper的體系架構(gòu),F(xiàn)link Standalone HA配置,F(xiàn)link on Yarn HA配置,F(xiàn)link批處理開發(fā),F(xiàn)link流處理開發(fā),F(xiàn)link的窗口操作,F(xiàn)link scala shell代碼調(diào)試
第四天學(xué)習(xí)考核與業(yè)內(nèi)經(jīng)驗交流
【授課專家】
趙老師 清華大學(xué)計算機雙學(xué)士,京東大學(xué)大數(shù)據(jù)學(xué)院院長,甲骨文(中國)軟件系統(tǒng)有限公司高級技術(shù)顧問,大數(shù)據(jù)、數(shù)據(jù)庫、中間件技術(shù)和Java專家。16年IT行業(yè)從業(yè)經(jīng)歷,10年培訓(xùn)授課經(jīng)驗。具有豐富的大數(shù)據(jù)方法論、數(shù)據(jù)科學(xué)、大數(shù)據(jù)生態(tài)圈技術(shù)知識和大數(shù)據(jù)規(guī)劃建設(shè)、應(yīng)用實施和客戶培訓(xùn)經(jīng)驗。
張老師 天津大學(xué)軟件工程碩士,10多年的IT領(lǐng)域相關(guān)技術(shù)研究和項目開發(fā)工作,在長期軟件領(lǐng)域工作過程中,對軟件企業(yè)運作模式有深入研究,熟悉軟件質(zhì)量**標(biāo)準(zhǔn)ISO9003和軟件過程改進(jìn)模型CMM/CMMI,在具體項目實施過程中總結(jié)經(jīng)驗,有深刻認(rèn)識。通曉多種軟件設(shè)計和開發(fā)工具。對軟件開發(fā)整個流程非常熟悉,能根據(jù)項目特點定制具體軟件過程,并進(jìn)行項目管理和監(jiān)控,有很強的軟件項目組織管理能力。對C/C++ 、HTML 5、python、Hadoop、java、java EE、android、IOS、大數(shù)據(jù)、云計算有比較深入的理解和應(yīng)用,具有較強的移動互聯(lián)網(wǎng)應(yīng)用需求分析和系統(tǒng)設(shè)計能力,熟悉Android框架、IOS框架等技術(shù),了解各種設(shè)計模式,能在具體項目中靈活運用。
蔣老師 清華大學(xué)博士,云計算專家 熟悉主流的云計算平臺,并有商業(yè)與開源云計算平臺的實踐經(jīng)驗,對云計算關(guān)鍵技術(shù)有深刻了解和實踐經(jīng)驗,如分布式系統(tǒng)、虛擬化、分布式文件系統(tǒng)、云存儲等,參與并領(lǐng)導(dǎo)多個大型云計算項目。對大數(shù)據(jù)關(guān)鍵技術(shù)有深刻了解和實踐經(jīng)驗,如NoSQL數(shù)據(jù)庫、大數(shù)據(jù)處理、Hadoop、Hive、HBase、Spark等。
【關(guān)于學(xué)?!?/b>
中培堅持以協(xié)助企業(yè)發(fā)展,提升員工IT職業(yè)技能為目標(biāo)。力求打造從IT培訓(xùn)、IT規(guī)劃咨詢、到IT技術(shù)支撐的落地服務(wù)閉環(huán)。主要涉及培訓(xùn)業(yè)務(wù)和咨詢業(yè)務(wù)兩大版塊。其中,培訓(xùn)業(yè)務(wù)涉及產(chǎn)品設(shè)計、軟件開發(fā)、IT管理、數(shù)據(jù)庫、IT運維、大數(shù)據(jù)、信息安全、人工智能等八大版塊。咨詢業(yè)務(wù)涉及大型集團(tuán)化企業(yè)的IT戰(zhàn)略規(guī)劃、IT架構(gòu)規(guī)劃、IT綜合管控、信息安全等領(lǐng)域。
借助于優(yōu)質(zhì)的專家資源,中培已經(jīng)為中國工商銀行、中國農(nóng)業(yè)銀行、中國銀行、中國平安、交通銀行、中國郵政、中國聯(lián)通、中國電信、上汽集團(tuán)、一汽集團(tuán)、格力、中國石化、百度、浪潮、聯(lián)想等企業(yè)在內(nèi)的,共計178家,提供高質(zhì)量的定制化培訓(xùn)課程1432門。累計服務(wù)32631人次,累計服務(wù)時長達(dá)52658小時,企業(yè)滿意度高達(dá)95.36%。
在中國IT技術(shù)高速發(fā)展的近20年,中培緊隨趨勢穩(wěn)步發(fā)展,正逐漸成長為業(yè)內(nèi)TOP級的高端信息化服務(wù)平臺型企業(yè)。
中培14年的歷程,正是因為客戶的信任和支持,才取得了長足的進(jìn)步和發(fā)展,才有了立足于IT培訓(xùn)行業(yè)的驕人實力。
【企業(yè)使命】
培養(yǎng)卓越IT經(jīng)理人
助力企業(yè)全面提升IT技術(shù)管理水平
【金 牌客戶】